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Abstract

This is a formulation study exploring whether the endpoint unique continuation
framework (form-bounded potentials + Carleman estimates + doubling + frequency
rigidity) is structurally compatible with the Einstein vacuum equations. Unlike pre-
vious systems (Navier–Stokes, Yang–Mills, wave maps), Einstein is fundamentally
different: the operator depends on the solution, light cones move, Carleman geome-
try is dynamical, and unique continuation can fail on spacetimes with trapped null
geodesics. This document asks: Is the UC-form-frequency pipeline even de-
finable here? The goal is not to claim closure, but to identify the exact geometric
obstructions to UC-rigidity in general relativity.
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1 Introduction: A Formulation Study

1.1 Purpose of This Document
This document is a formulation study, not a proof. Its purpose is to explore whether the
endpoint unique continuation framework (form-bounded potentials + Carleman estimates
+ doubling + frequency rigidity) is structurally compatible with the Einstein vacuum
equations.

Unlike previous systems in this program:

• Navier–Stokes: Semilinear parabolic, fixed light cones

• Yang–Mills (parabolic/hyperbolic): Quasilinear with known dispersion, fixed
or slowly varying cones

• Wave maps: Geometric evolution with fixed Minkowski background
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Einstein is fundamentally different:

• The operator □g depends on the solution g itself

• Light cones move with the metric

• Carleman weight geometry is dynamical

• Unique continuation can be false on spacetimes with trapped null geodesics

1.2 The Central Question
Is the UC-form-frequency pipeline even definable here?

This document asks:

1. Can we fix a gauge (harmonic/wave gauge) and linearize?

2. Can we define a form functional for the curvature Rm?

3. Can we define backward light cones in curved spacetime?

4. Can we state (not prove) a conjectural Carleman inequality?

5. What are the exact geometric obstructions?

1.3 Expected Outcome
The likely outcome is not closure, but:

• Identification of exact geometric obstructions to UC-rigidity in GR

• Understanding of where the endpoint framework breaks

• A deep and honest result about the limits of quantitative unique continuation in
general relativity

This is a reality check. If the framework fails here, that failure is informative and
valuable.

1.4 Structure
• Section 2: Gauge fixing and linearization

• Section 3: Curvature as a form-bounded potential (candidate definition)

• Section 4: Backward light cones in curved spacetime

• Section 5: Carleman feasibility (conjectural, not proven)

• Section 6: Obstructions (lack of coercivity, trapped null geodesics, gauge degen-
eracy, failure of backward uniqueness)
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1.5 Conventions
We work in 3+1 dimensions unless otherwise stated. The metric signature is (−, +, +, +).
All statements are formulations or questions, not proven theorems unless explicitly
marked as such.

2 Gauge Fixing and Linearization

2.1 The Einstein Vacuum Equations
The Einstein vacuum equations are:

Rµν = 0,

where Rµν is the Ricci tensor of the metric gµν .
In coordinates, this is a system of 10 nonlinear PDEs for the 10 components of the

metric tensor.

2.2 Harmonic/Wave Gauge
To linearize, we must fix a gauge. The standard choice is the harmonic gauge (also
called wave gauge):

□gxµ = gαβΓµ
αβ = 0,

where Γµ
αβ are the Christoffel symbols.

In harmonic gauge, the Einstein equations become:

□ggµν + Qµν(g, ∂g) = 0,

where Qµν is a quadratic form in the first derivatives of g.

2.3 Linearization
Let gµν be a solution to the Einstein vacuum equations, and let hµν be a perturbation.
The linearized Einstein equations in harmonic gauge are:

□ghµν + 2Rµανβhαβ = 0,

where:

• □g = gαβ∇α∇β is the covariant d’Alembertian

• Rµανβ is the Riemann curvature tensor of the background metric g

• hαβ = gαµgβνhµν is the raised perturbation
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2.4 UC Operator Form (Candidate)

Candidate UC Operator Form

The linearized Einstein equations take the form:

□ghµν + V αβ
µν hαβ = 0,

where:

• □g is the covariant wave operator (depends on g)

• V αβ
µν = 2Rµανβ is the curvature potential (depends on g)

Key difference from previous systems: Both the operator and the potential
depend on the solution g itself. This is not a fixed operator with a form-bounded
potential; it is a quasilinear system where the linearization depends on the back-
ground.

2.5 Questions
Question 2.1 (Gauge Stability). Is the harmonic gauge condition preserved under the
linearized evolution? If not, what is the gauge drift term, and can it be controlled?

Question 2.2 (Background Regularity). What regularity do we need on the background
metric g to make sense of □g and Rµανβ? Is this regularity preserved under the Einstein
evolution?

Question 2.3 (Operator Coercivity). Is □g coercive on tensor fields? In Minkowski
space, □ is coercive. In curved spacetime, does the curvature break coercivity?

3 Curvature as a Form-Bounded Potential

3.1 Candidate Form Functional
In previous systems (Navier–Stokes, Yang–Mills, wave maps), we defined a form func-
tional:

A|V |,r(t) = sup
g∈H1

0 (Br(t))\{0}

∫
Br(t) |V ||g|2∫
Br(t) |∇g|2

.

For Einstein, the potential is the curvature tensor Rµανβ. A candidate form functional
would be:

A|Rm|,r(t) = sup
h∈H1

0 (Br(t))\{0}

∫
Br(t) |Rµανβ||hαβ|2∫

Br(t) |∇h|2
,

where h is a tensor field and |Rµανβ| is some norm of the curvature tensor.

3.2 Scale-Invariance Question
Question 3.1 (Scale-Invariance). Is Rµανβ even in the right scale-invariant class for form
control?
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In Minkowski space, R = 0. For a perturbation, the curvature scales like |x|−2 in
the critical case. But in curved spacetime, the background curvature itself may not be
scale-invariant.

What is the natural scale-invariant norm for |Rµανβ|? Is it L3/2,1 (as in Navier–Stokes),
or something else?

3.3 Energy Control (Conjectural)
In previous systems, we proved:

Energy ⇒ Form-boundedness.

For Einstein, the energy is:

E(h, t) =
∫

Σt

(
|∂th|2 + |∇h|2 + |h|2

)
dµg,

where Σt is a spacelike hypersurface and dµg is the volume form.

Question 3.2 (Energy to Form Control). Can we prove (or is it even true) that:

E(h, t) < ∞ ⇒ A|Rm|,r(t) < ∞?

Or does the curvature Rµανβ itself need to be controlled independently?

3.4 Time Integrability Question
In previous systems, we had:

r ∈ L2
t ((−r, 0)).

Question 3.3 (Time Integrability). What replaces L2
t in curved spacetime?

In curved spacetime, time is not a global coordinate. We work on a foliation {Σt} of
spacelike hypersurfaces. What is the natural time-integrability condition?

Is it: ∫ 0

−r
A|Rm|,r(t)2dt < ∞?

Or do we need a different measure (e.g., proper time along geodesics)?

3.5 Good-Time Selection (If Definable)
In previous systems, we defined good-time sets via Chebyshev’s inequality:

Ir,good(t0) = {t ∈ (−r, 0) : Kuc(r, t) ≤ Λr}.

Question 3.4 (Good-Time Selection). Can we define good-time sets in curved spacetime?
What is the time coordinate? Do we use:

• Coordinate time (if a global time function exists)?

• Proper time along a timelike geodesic?

• Something else?
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4 Backward Light Cones in Curved Spacetime

4.1 The Fundamental Difference
In Minkowski space, backward light cones are well-defined:

C−(x0, t0) = {(t, x) : t < t0, |x − x0| < t0 − t}.

In curved spacetime, light cones are dynamical and depend on the metric g itself.

4.2 Definition of Backward Light Cones
For a point p ∈ M in a spacetime (M, g), the backward light cone C−(p) is the set of
all points q such that there exists a future-directed null geodesic from q to p.

More precisely:
C−(p) = {q ∈ M : q ∈ J−(p) \ I−(p)},

where J−(p) is the causal past of p and I−(p) is the chronological past of p.

4.3 Truncated Cones
For a radius r > 0 (measured in proper time or some other parameter), we can define a
truncated backward light cone:

C−
r (p) = {q ∈ C−(p) : dist(q, p) < r},

where dist(q, p) is the proper time along a null geodesic from q to p (if it exists).

Question 4.1 (Cone Regularity). Are backward light cones in curved spacetime smooth?
Do they have a well-defined boundary? What regularity do we need on g to ensure this?

4.4 Energy on Cones
In Minkowski space, we defined:

ME(t, r) =
∫

{t}×B−t(0)

(
|∂th|2 + |∇h|2

)
dx.

In curved spacetime, we need to define energy on a spacelike slice of the backward
light cone.

Question 4.2 (Energy Definition). How do we define energy on a slice of a backward
light cone in curved spacetime?

Options:

• Use a foliation {Σt} of spacelike hypersurfaces and integrate over Σt ∩ C−
r (p)

• Use the stress-energy tensor Tµν and integrate over a null hypersurface

• Something else?
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4.5 Trapped Null Geodesics
Obstruction 4.3 (Trapped Null Geodesics). On spacetimes with trapped null geodesics
(e.g., Schwarzschild black hole), backward light cones can be non-compact or ill-
defined.

In such spacetimes, unique continuation can be false. This is a fundamental obstruc-
tion to the UC framework.

Question 4.4 (Trapping). Can we restrict to spacetimes without trapped null geodesics?
Is this a reasonable assumption, or does it exclude physically interesting cases (e.g., black
holes)?

4.6 Cone Geometry and Carleman Weights
In previous systems, we used Carleman weights of the form:

Φ(t, x) = |x|2 − βt2.

In curved spacetime, the geometry is dynamical.

Question 4.5 (Carleman Weight Geometry). Can we define a Carleman weight Φg that:

• Is adapted to the backward light cone C−
r (p)

• Has the right convexity properties for a Carleman estimate

• Depends on the metric g in a controlled way

Or does the dynamical geometry break the Carleman weight construction?

5 Carleman Feasibility (Conjectural)

5.1 Standard Carleman Estimate (Minkowski)
In Minkowski space, we have:

τ∥∇h∥2
L2(C−

r ) + τ 3∥h∥2
L2(C−

r ) ≤ C∥eτΦ□(e−τΦh)∥2
L2(C−

r ),

where Φ(t, x) = |x|2 − βt2 is a Carleman weight.

5.2 Conjectural Carleman Estimate (Curved)
For the linearized Einstein equations in curved spacetime, a conjectural Carleman esti-
mate would be:

τ∥∇gh∥2
L2(C−

r (p)) + τ 3∥h∥2
L2(C−

r (p)) ≤ Cg∥eτΦg□g(e−τΦgh)∥2
L2(C−

r (p)),

where:

• □g is the covariant d’Alembertian

• Φg is a Carleman weight adapted to the curved geometry

• Cg depends on the metric g and the curvature
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5.3 Questions
Question 5.1 (Carleman Estimate Existence). Does such a Carleman estimate exist in
curved spacetime? What conditions on g are needed?

Known obstructions:

• Lack of coercivity: If □g is not coercive, the estimate may fail

• Trapped null geodesics: On spacetimes with trapping, the estimate may not
hold

• Dynamical geometry: The weight Φg must be adapted to the moving light cones

Question 5.2 (Constant Dependence). How does the constant Cg depend on the metric
g? Does it blow up as:

• The curvature becomes large?

• We approach a trapped null geodesic?

• The metric becomes degenerate?

5.4 Absorption of Curvature Potential
In previous systems, we absorbed the potential via form-boundedness:

∥eτΦV h∥L2 ≤ CΛ∥eτΦ∇h∥L2 .

For Einstein, the potential is V αβ
µν = 2Rµανβ.

Question 5.3 (Potential Absorption). Can we absorb the curvature potential Rµανβ into
the Carleman estimate? What form-boundedness condition do we need?

Is it:
A|Rm|,r(t) ≤ Λr?

Or do we need a different condition (e.g., pointwise bounds on |Rµανβ|)?

5.5 Three-Cone Inequality (Conjectural)
If a Carleman estimate exists, we could try to derive a three-cone inequality:

ME(t, r2) ≤ CME(t, r1)αME(t, r3)1−α exp(CKEinstein
uc (r, t)),

where ME(t, r) is the energy on a slice of the backward light cone.

Question 5.4 (Three-Cone Feasibility). Is such a three-cone inequality even feasible in
curved spacetime? What are the obstructions?

6 Geometric Obstructions to UC-Rigidity in GR
This section identifies the exact geometric obstructions that prevent the endpoint UC
framework from working in general relativity.

9



6.1 Obstruction 1: Lack of Coercivity
Obstruction 6.1 (Lack of Coercivity). The covariant d’Alembertian □g may not be coer-
cive on tensor fields in curved spacetime.

In Minkowski space, □ is coercive. In curved spacetime, the curvature can break
coercivity, especially near:

• Singularities (e.g., Big Bang, black hole singularities)

• Regions of large curvature

• Degenerate metrics

Impact: If □g is not coercive, the Carleman estimate may fail, and the entire UC
pipeline breaks down.

6.2 Obstruction 2: Trapped Null Geodesics
Obstruction 6.2 (Trapped Null Geodesics). On spacetimes with trapped null geodesics
(e.g., Schwarzschild black hole), backward light cones can be non-compact or ill-defined.

In such spacetimes, unique continuation can be false. This is a fundamental obstruc-
tion.

Impact: The UC framework assumes that backward light cones are well-defined and
compact. On trapped spacetimes, this assumption fails.

6.3 Obstruction 3: Gauge Degeneracy
Obstruction 6.3 (Gauge Degeneracy). The harmonic gauge condition □gxµ = 0 may not
be preserved under evolution, or may become degenerate.

Gauge drift terms can accumulate and break the linearization.
Impact: If the gauge is not stable, the linearized equation □ghµν + 2Rµανβhαβ = 0

may not be valid, and the UC operator form breaks down.

6.4 Obstruction 4: Failure of Backward Uniqueness
Obstruction 6.4 (Failure of Backward Uniqueness). Even if a Carleman estimate exists,
backward uniqueness can fail in general relativity.

Known counterexamples exist on spacetimes with:

• Closed timelike curves

• Naked singularities

• Exotic topologies

Impact: The entire blow-up exclusion argument relies on backward uniqueness. If
this fails, the framework cannot close.
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6.5 Obstruction 5: Dynamical Geometry
Obstruction 6.5 (Dynamical Geometry). The light cones move with the metric g. The
Carleman weight geometry is dynamical.

Unlike previous systems where the geometry is fixed (Minkowski) or slowly varying
(Yang–Mills, wave maps), in Einstein the geometry is fully dynamical.

Impact: The Carleman weight Φg must be adapted to the moving geometry. This
may be impossible or may require conditions on g that are not preserved under evolution.

6.6 Obstruction 6: Operator Dependence on Solution
Obstruction 6.6 (Operator Dependence). The operator □g and the potential Rµανβ both
depend on the solution g itself.

This is fundamentally different from previous systems, where we had a fixed operator
with a form-bounded potential.

Impact: The form-boundedness condition A|Rm|,r(t) ≤ Λr must be checked on the
solution g itself. This creates a circularity: we need g to be regular to define the form
functional, but we need the form functional to prove regularity.

6.7 Summary: Where the Framework Breaks
The endpoint UC framework breaks in general relativity due to:

1. Lack of coercivity of □g in curved spacetime

2. Trapped null geodesics making backward light cones ill-defined

3. Gauge degeneracy breaking the linearization

4. Failure of backward uniqueness on exotic spacetimes

5. Dynamical geometry making Carleman weights ill-defined

6. Operator dependence on solution creating circularity

6.8 What This Means
This is not a failure of the framework; it is a deep and honest result about the limits
of quantitative unique continuation in general relativity.

The framework works for:

• Elliptic operators (Schrödinger)

• Parabolic operators (heat, NS, MHD, Yang–Mills heat flow, harmonic maps)

• Hyperbolic operators with fixed geometry (wave maps, Yang–Mills wave)

But it breaks for:

• Fully dynamical hyperbolic systems (Einstein vacuum)

This identifies the exact geometric obstructions to UC-rigidity in GR, which is
itself a valuable mathematical result.
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A Technical Background

A.1 Harmonic Gauge
The harmonic gauge condition is:

□gxµ = gαβΓµ
αβ = 0.

This is a coordinate condition that simplifies the Einstein equations.

A.2 Linearized Einstein Equations
The full derivation of the linearized Einstein equations in harmonic gauge can be found
in standard references (e.g., [Wal84]).

A.3 Curvature Tensors
The Riemann curvature tensor is:

Rµ
νρσ = ∂ρΓµ

νσ − ∂σΓµ
νρ + Γµ

αρΓα
νσ − Γµ

ασΓα
νρ.

The Ricci tensor is:
Rµν = Rα

µαν .

The scalar curvature is:
R = gµνRµν .

A.4 Backward Light Cones
For a point p in a spacetime (M, g), the causal past J−(p) is the set of all points q such
that there exists a future-directed causal curve from q to p.

The chronological past I−(p) is the set of all points q such that there exists a future-
directed timelike curve from q to p.

The backward light cone is:

C−(p) = J−(p) \ I−(p).

A.5 Trapped Null Geodesics
A null geodesic γ is trapped if it is confined to a compact region of spacetime.

On the Schwarzschild black hole, null geodesics can be trapped near the event horizon.

A.6 Unique Continuation in GR
Unique continuation can fail in general relativity. Known counterexamples exist on space-
times with closed timelike curves or exotic topologies.

See [Wal84] for a discussion of unique continuation in GR.
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