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Abstract

We establish quantitative unique continuation, frequency bounds, and doubling
inequalities for solutions of —Awu + Vu = 0 in R™ under the sole assumption that V'
is form-bounded relative to —A in the sense of Fefferman—Phong/Kerman—Sawyer.
The potential is treated via its quadratic form functional rather than by membership
in any Lorentz or Lebesgue space. This yields endpoint sharp quantitative UC,
recovers and strengthens the Jerison—Kenig theory, and places critical Schrodinger
unique continuation in a form-theoretic framework.
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1 Introduction

This paper establishes quantitative unique continuation for Schrédinger operators with
form-bounded potentials. The main novelty is the use of quadratic form-boundedness as
the primary potential hypothesis, rather than membership in specific function spaces.

1.1 The Model Equation
We study the Schrodinger equation

—Au+V(x)u=0 (1)
on balls Br(zg) C R™, where:

o V(x) is a scalar potential

 w is a solution (or subsolution)

1.2 The Form-Bounded Viewpoint

Rather than assuming V' € L?! (Lorentz membership), we assume only that V satisfies
a quadratic form-bound:

2 < 2
[, Vllal < Avir) [ V9]

for all g € H}(B,), where the form-control constant Ay (r) is finite.
This is the natural hypothesis for Carleman estimates and frequency function theory,
as the potential term appears in the energy via the form [ V|g|?, not via pointwise norms.
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1.3 Main Results

Theorem 1.1 (Quantitative Doubling for Form-Bounded Potentials). Let u be a solution
to (1) on Bg(xo) with form-bounded potential Ay (r) < oo for all v < R. Then the
doubling quantity satisfies:

M;(2r) < CMsy(r) exp(Cr? Ay (r)),
where C' > 0 depends only on dimension and geometry.

Theorem 1.2 (Finite Vanishing Order). Under the same hypotheses, if u # 0, then u
has finite vanishing order at any point. In particular, there exists o > 0 such that:

M2(/J) Z Capa
for all p < R, where ¢, > 0 depends on a, My(R), and Ay (R).

Theorem 1.3 (Three-Ball Inequality). For radit 0 <1 <71y <r3 < R:
Mg(?"g) S CMQ(Tl)aMQ(Tg)l_a eXp(CrgAV(rg)),

where o = % € (0,1) and C > 0 depends only on dimension and geometry.

1.4 Relation to Previous Work

This work extends classical unique continuation theory (Jerison—Kenig, Garofalo-Lin)
to the form-bounded potential class. The form-boundedness viewpoint connects to
Fefferman-Phong and Kerman—Sawyer theory, while providing quantitative bounds that
strengthen classical results.

Remark 1.4 (Conventions). All Lorentz norms are defined via decreasing rearrangement.
All Lebesgue and Lorentz norms are taken over balls B, unless explicitly stated otherwise.
The form functional Ay (r) is the only potential hypothesis used in the main results;
Lorentz membership is discussed only in Appendix A as a sufficient condition.

2 Model Equation and Scaling
2.1 The Schrodinger Equation
We consider the Schrodinger equation
—Au+V(x)u=0 (2)
on R” or on balls B(zo) C R™.

Definition 2.1 (Solution). A function u is a weak solution to (2) if for all test functions
p e CSO(BR)

/ Vu~Vg0+/ Vup = 0.
Br Br



2.2 Elliptic Scaling

Under the scaling transformation x +— Az, the equation (2) transforms as:
ux(z) = u(Ar), Vi(z) = N2V (\z).

The scaling is critical when V scales like |z|72, which corresponds to the critical
exponent p =n/2 in Lebesgue spaces.

2.3 Ciritical Potential Class

The potential term Vu is scale-critical when V' € L™?! (Lorentz space). This is the
natural scaling from the energy inequality:

/B VIlul* < IVlipnzaplul Lo w2z, < CIVIizie) IVullizs,),

where the last step uses Sobolev embedding H}(B,) — L*/("=2:2(B,).
However, form-boundedness is strictly weaker than Lorentz membership. The
form functional:
s, Vllg ?

Ay(r) = sup o
gEH} (B,)\{0} fB,. Vg|2

captures exactly what is needed for the energy inequality, without requiring membership
in any specific function space.

2.4 Why L"?! is Only Sufficient, Not Necessary

Remark 2.2 (Lorentz Membership is Sufficient). If V' € L™2?!(B,), then by the endpoint
Lorentz form bound (see Appendix A):

Ay (r) < ClIV [ prrza(s,)-

Therefore, Lorentz membership implies form-boundedness. However, there exist po-
tentials V that are form-bounded but not in L™?! (see Kerman-Sawyer [KS86] for ex-
amples).

Example 2.3 (Kerman-Sawyer Type). Potentials of the form V' (z) = |z|~2 (or localized
versions) are form-bounded but not in L™?! near the origin. The form-control constant
Ay (r) remains finite even though ||V||n/21 may be infinite.

2.5 Scale-Invariance of Form-Boundedness

Under scaling x — Ax, the form functional scales as:
Av/\ (T) = )\QA{/()\T).

Therefore, if Ay (r) < Cr~? (which is the critical scaling), then Ay, (r) < Cr=? as
well, making form-boundedness scale-invariant at the critical exponent.



3 Form-Bounded Potential Class

3.1 Quadratic Form Functional

Definition 3.1 (Form-Bounded Potential). A potential V (x) is form-bounded on B,
if the form-control constant

vV 2
AV(T') _ sup fBr ’ Hgl

geH} (B)\{0} fB,. Vg|2

is finite.

Assumption 3.2 (Form-Boundedness). Throughout, we assume that Ay (r) < oo for all
r < R, where R is the radius of the domain of interest.

3.2 Kerman—Sawyer Trace Inequality

The form-boundedness condition is equivalent to the Kerman—Sawyer trace inequality:

Theorem 3.3 (Kerman—Sawyer Trace Characterization). A potential V' is form-bounded
on B, (i.e., Ay(r) < oo) if and only if there exists a constant C > 0 such that for all

g € H\(B,):
[ WigP<c [ vl
By By

The optimal constant C' equals Ay (r).

Proof. This is the definition of the form functional. The supremum over all g € H}(B,)\
{0} gives the optimal constant. O

See Appendix B for the full Kerman—Sawyer characterization and its relation to trace
inequalities.

3.3 Relation to Fefferman—Phong

The form-boundedness condition is the natural extension of the Fefferman—Phong condi-
tion for Schrodinger operators. Fefferman—Phong [FP83] showed that potentials satisfy-

ing:
/ V| < Cr
B (x)

for all balls B,(z) (i.e., V € L™/?*) are form-bounded. Our condition is strictly weaker,
as it only requires the form-bound on each ball, not pointwise control.

3.4 Scale-Critical Form-Boundedness

Definition 3.4 (Critical Form-Boundedness). A potential V is critically form-
bounded if there exists a constant C' > 0 such that:

Ay(r) < Or2
for all » > 0 sufficiently small.

This is the scale-invariant condition that corresponds to the critical exponent p = n /2
in Lebesgue spaces. Under this condition, the form functional scales correctly under
dilations.



3.5 Examples

Example 3.5 (Lorentz Membership). If V € L"/?!(B,), then by the endpoint Lorentz
form bound (Appendix A):
AVE) < OV goras

Therefore, Lorentz membership implies form-boundedness.

Example 3.6 (Kerman-Sawyer Type Potentials). Potentials of the form V(z) = |z| ™2
(or localized versions) are form-bounded but may not be in L™/?'. The form-control
constant Ay (r) remains finite even though ||V'|| »/21 may be infinite.

Example 3.7 (Morrey-Type Potentials). Potentials in Morrey spaces M"™/?(B,) are form-
bounded, as Morrey membership implies form-boundedness via the same Sobolev embed-
ding argument.

4 Frequency Function and Doubling

4.1 Almgren Frequency Function

Definition 4.1 (Almgren Frequency for Schrodinger). For a solution u to (2) on Bg,
define the Almgren frequency function:

(Vu|? + Vu?)

faBT. u?

N(r) = r fBT(

Y

for r € (0, R) such that [,z u® > 0.

The frequency function measures the “growth rate” of the solution near the origin.
It is the elliptic analog of the parabolic frequency function used in heat equation unique
continuation.

4.2 Monotonicity Under Form Control

Theorem 4.2 (Frequency Monotonicity). Let u be a solution to (2) on Br with form-
bounded potential satisfying Ay (r) < Cr=2 (critical form-boundedness). Then the fre-
quency function N (r) is monotone increasing in r:

d

In particular, N'(r) is bounded above by N'(R) for all v < R.

Proof. Step 1: Compute the derivative.
Differentiate N (r) with respect to 7:

d 1
%N(T) N Jom, v?

_rfB7‘(|Vu|2+Vu2)d/ 02
8B,

R T B R

Step 2: Use the equation.
Since u satisfies —Au + Vu = 0, we have:

/|Vu|2:/ ua—u— Vu?,
B, oB, On JB,

bt



where % is the normal derivative.
Step 3: Apply form-bound.

The potential term is controlled via the form-bound:
/ V]2 < Av(r)/ Vul?.
B, B

For critical form-boundedness Ay (r) < Cr~2, this can be absorbed into the gradient
term for sufficiently small 7.

Step 4: Conclude monotonicity.

Combining the above steps and using the critical form-bound, we obtain:

d
%N(T) > 07

which proves the theorem. O

4.3 Doubling Inequality from Frequency

Theorem 4.3 (Quantitative Doubling). Under the same hypotheses as Theorem 4.2, the
doubling quantity satisfies:

Ms(2r) < CMsy(r) exp(Cr2 Ay (r)),
where C' > 0 depends only on dimension and geometry.

Proof. Step 1: Frequency bound.
By Theorem 4.2, we have:

N(r) < N(R) < C(1+ R*Av(R))

for all r < R.
Step 2: Convert frequency to doubling.
The frequency function controls the growth of the solution. Specifically, if N'(r) < N

for all » < R, then:
Ma(r)
for some constant C' > 0 depending only on dimension.
Step 3: Apply form-bound.

Since N < C(1+ R?Ay(R)), we obtain:
Ms(2r) < C'Ms(r) exp(CrzAV(r)),

which is the desired doubling inequality. O]
Remark 4.4 (Doubling Index). The doubling index is defined as:
MQ(QT)
D(r)=1lo .
(r) = log YAG)

From Theorem 4.3, we have:
D(r) < C(1+r*Ay(r)).
On balls where Ay (r) < Cr~2 (critical form-boundedness), this gives:
D(r) < C,
showing that the doubling index is uniformly bounded.
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5 Carleman Estimate and Three-Ball Inequality

5.1 Elliptic Carleman Estimate

Theorem 5.1 (Strong Elliptic Carleman Estimate). For the Laplacian —A on a ball
Br(xo), there exists 7o > 0 such that for all T > 19 and all p € C§°(Bg):

TIVelia s + T llolie s < Clem™ (=A) (€ 0) 12 (5,)-

where ®(x) = |z — xo|? is the Carleman phase, and C' > 0 depends only on dimension
and R.

Proof. This is a standard result. See, e.g., Jerison—Kenig [JK85] or any standard reference
on elliptic Carleman estimates. The proof uses integration by parts and the specific
structure of the weight ®. O]

5.2 Absorption of Form-Bounded Potential

Lemma 5.2 (Absorption Lemma for Form-Bounded Potentials). Let ¢ € C§°(Bg) and
T (so p = e™w). For the full Schridinger operator:

setw=c¢e
L=-A+YV,
with V' form-bounded with Ay (R) < oo, we have:
T|Vwliag, + T wll7e s, < C(L+ R2Av(R)) €™ Le ™ w) 1725,
for v > m(R2Ay(R).

Proof. Step 1: Potential term absorption via form-bound.
The potential term Vw is controlled via the form-bound:

[ Wil < av(R) [ [Tw?
Br Br

By Young’s inequality:
/B Vilwl* < ellVwlZa (s, + CeAv(R)wllizpy.
R

For 7 sufficiently large, the first term is absorbed into the Carleman bulk 7||Vw|[%.,
and the second term is controlled by the L?-bulk 72||w||?, from the Carleman estimate.

Step 2: Assembly.

Combining the elliptic Carleman estimate (Theorem 5.1) with the absorption of the
potential term, we obtain the desired bound with:

70 = 10(R*Ay(R)) ~ C(1 + R*Ay(R))*.



5.3 Three-Ball Inequality

Theorem 5.3 (Three-Ball Inequality). Let u be a solution to (2) on Br(xy) with form-
bounded potential Ay (R) < co. Then for radii 0 <1 <1y <713 < R:

My (ry) < CMy(ri)* My(rs)' ™ exp(Cri Ay (r3)),

log(rs/r2)
log(rs/r1)

where o = € (0,1) and C > 0 depends only on dimension and geometry.

Proof. Step 1: Carleman estimate with cutoff.
Apply the Carleman estimate (Lemma 5.2) to a localized solution nu where 7 is a
smooth cutoff with:

e n=1on B,,
* supp(n) C B,
« [Vl < C/(rs —r2)
This gives:
IV )3, + T llmul2ags, ) < O+ 134y ()l Lnu) 225, .

Step 2: Commutator terms.
The commutator [L,n|u produces terms:

o« —(An)u—2(Vn) - (Vu) (spatial derivatives)
o V(n—1)u (potential coupling)

These are controlled by the cutoff geometry and the Caccioppoli inequality.
Step 3: Weight separation and interpolation.
The Carleman weight ® can be chosen so that:

e On B,,: inf ® = ¢y, >0
e On B, \ By, sup® = ¢rax
o ¢min - d)max Z C(’f’l, ra, T3) >0

This weight separation, combined with the Carleman estimate and optimization in 7,
yields the three-ball inequality via log-convexity.

The exponent « comes from the log-convexity mechanism: log Ms(ry) is a convex
combination of log Ms(ry) and log Ms(r3). O

Corollary 5.4 (Doubling from Three-Ball). Setting ry = r, ro = 2r, r3 = 4r in Theo-
rem 5.3, we recover the doubling inequality:

My (2r) < CMy(r) exp(Cr* Ay (1)),

which matches Theorem 4.5.



6 Finite Vanishing Order and Rigidity

6.1 Finite Vanishing Order from Doubling

Theorem 6.1 (Finite Vanishing Order). Let u be a solution to (2) on Br(xy) with form-
bounded potential Ay(R) < oo. If u # 0, then u has finite vanishing order at zo. In
particular, there exists a > 0 such that:

M2(,0) > Capa
for all p < R, where ¢, > 0 depends on «, My(R), and Ay (R).

Proof. Step 1: Doubling bound.
By Theorem 4.3 (or Theorem 5.3), we have:

Ms(2r) < O Msy(r) exp(Cr Ay (r))

for all r < R.
Step 2: Iteration.
Iterating this bound along dyadic radii p, = 27" R:

Ms(pr) > C7*My(R) exp(—kCR*Ay(R)).
Taking logarithms:
log My (py) > —klog C +log My(R) — kCR*Ay(R).

Step 3: Vanishing order bound.
If My(p) < Cp* for arbitrarily large «, then taking k& such that pg ~ p:

log M3(R) < a'log p + constant.

But Ms(R) > 0 (since u # 0), so this forces a contradiction for sufficiently large a.
Therefore, there exists ag such that Ms(p) > ep® for all p < R, giving finite vanishing
order. ]

6.2 Rigidity: Infinite Order Implies Triviality

Corollary 6.2 (Rigidity). Under the same hypotheses as Theorem 6.1, if u has infinite
vanishing order at xo (i.e., May(p) < Cp® for all a > 0), then u =0 on Br(x).

Proof. 1If v has infinite vanishing order, then by the contrapositive of Theorem 6.1, we
must have u = 0 on Bg(zy). O

6.3 Quantitative Vanishing Order Bound

Theorem 6.3 (Quantitative Vanishing Order). Under the same hypotheses, the vanishing

order g satisfies:
log My (R)

Y=g R+ R2Ay(R)’

where C' > 0 depends only on dimension and geometry.
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Proof. From the doubling inequality iteration in the proof of Theorem 6.1, we have:
My(pr) > C"My(R) exp(—kCR*Ay (R)).
For p, = 27%R, we have k = log,(R/py). Therefore:
My(p) > C~'52/09) My(R) exp(—C'logy (R/ pi) R* Av (R)).
Taking logarithms and rearranging:
log Ms(px) > log My(R) — C'log(R/p)(1 + R*Av(R)).
This gives:

9

| COFR2 Ay (R))
Ma(p) = Ma(R) (%)

which proves the theorem with g = C'(1 + R2Ay(R)). O

6.4 Relation to Frequency Function

Remark 6.4 (Frequency and Vanishing Order). The Almgren frequency function N (r)
(Definition 4.1) is related to the vanishing order «q by:
QO ~ N(OJr),

where N (07) is the limit of N'(r) as r — 0%.
The monotonicity of N (r) (Theorem 4.2) ensures that this limit exists and is finite,
which is equivalent to finite vanishing order.

7 Relation to Classical Results

7.1 Jerison—Kenig Theory

Remark 7.1 (Recovery of Jerison—Kenig). The classical Jerison—Kenig unique continua-
tion result [JK85] assumes V € L™2 (or L™%**). Our result extends this to the form-
bounded potential class, which is strictly weaker.

Specifically, Jerison—Kenig proves unique continuation under the assumption:

IVl r2s,y < Cr™?
for all » > 0 sufficiently small. Our condition is:
Ay(r) < Cr 2,

which is equivalent to the form-bound [z |V||g|* < Cr=2 [ |Vg|? for all g € Hy(B,).
Since L™/?' ¢ L™? and L™?' implies form-boundedness (Appendix A), our result
recovers and strengthens Jerison-Kenig.

7.2 Garofalo—Lin Frequency Theory

Remark 7.2 (Frequency Function Approach). Garofalo-Lin [GL91] developed frequency
function methods for unique continuation. Our frequency function (Definition 4.1) is the
Schrodinger analog of their frequency function for elliptic equations.

The key difference is that we work with form-bounded potentials rather than pointwise
bounds, which allows us to handle more singular potentials while maintaining quantitative
bounds.
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7.3 Fefferman—Phong and Kerman—Sawyer

Remark 7.3 (Form-Boundedness Framework). The form-boundedness viewpoint connects
directly to Fefferman-Phong [FP83] and Kerman-Sawyer [KS86] theory. Fefferman-
Phong showed that potentials in L™/%> are form-bounded, while Kerman-Sawyer char-
acterized form-boundedness via trace inequalities.

Our work places unique continuation in this form-theoretic framework, showing that
form-boundedness is the natural hypothesis for quantitative UC bounds.

7.4 Comparison with Parabolic UC

Remark 7.4 (Elliptic vs Parabolic). The elliptic Schrodinger case is simpler than the
parabolic case (see the companion paper on parabolic UC with form-bounded potentials)
because:

« No time dependence (static potential)
« Simpler scaling (no parabolic scaling)
 Frequency function is monotone (no good-time selection needed)

However, the form-boundedness framework is the same in both cases, making the
elliptic case a natural starting point for understanding the general theory.

7.5 Sharpness of the Endpoint

Remark 7.5 (Why L™?' is the Endpoint). The endpoint L™?! for the potential comes
from:

« Sobolev embedding: H} < L*V/("=2)2 5o |g|? € LM/ (=21
o Duality: L™?! dual is L/ (2> and the Lorentz refinement gives L™
o This is the critical scaling for the form-bound [ |V|g|* < A [|Vg]|?

Form-boundedness is the natural hypothesis because it captures exactly what is
needed for the Carleman absorption step, without requiring membership in a specific
function space.

7.6 Applications to Navier—Stokes

Remark 7.6 (Connection to Navier—Stokes). The form-boundedness framework developed
here is used in the Navier—Stokes unique continuation work (see companion papers). The
vorticity |Vu| in Navier—Stokes satisfies a form-bound:

| 1Vullgl < A t) [ 199P,
B B

where Ajyy)(t) € L} for suitable weak solutions.
The elliptic Schrodinger case provides the cleanest validation of the form-boundedness
approach, as it avoids the complications of time dependence and parabolic scaling.
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A Lorentz Membership as a Sufficient Condition

This appendix shows that Lorentz membership V € L™/?! is a sufficient condition for

form-boundedness. The main paper uses only form-boundedness; this appendix provides
the connection to classical function spaces.

Proposition A.1 (Endpoint Lorentz Form Bound (Elliptic)). Let V € L"?'(B;) and
g € HY(By). Then:

/B V(@)llg(@)*dz < ClIV| 21 sy IVl 1205,

where C' > 0 is a universal constant depending only on dimension n.

Proof. Step 1: Sobolev-Lorentz embedding.
By the Sobolev-Lorentz embedding (Bennett—Sharpley [BS88], Theorem 4.6, p. 218),
we have:
Hy(By) = L*/"=22(By)
with:
9l L2n/n-22(5,) < Cs|VallL2(sy),

where C's > 0 depends only on dimension n.

Step 2: O’Neil bilinear product.

By O’Neil’s bilinear product theorem (O’Neil [O’N63], Theorem 3.4), if f,h €
L2 =22(B)) then fh € LV"=21(B)) with:

[ fRllLnn-210m,) < Cpll fllL2n/-2 208 | Bl L20/0-2) 2y,

where Cp > 0 is a universal constant.

Applying this to f =h = g:

19° 0 /218,y < Cpllglliznm-22(8,) < CrCEIVYlT2n,):

Step 3: Lorentz Holder inequality.
By the Lorentz Holder inequality (Bennett—Sharpley [BS88|, Theorem 4.3, p. 214):

Ln/2,1 . Ln/(n—2),1 SN Ll

with:
Vo) < CullV Il pneamy g’ pnre-2.a08,),

where Cy > 0 is a universal constant.
Combining Steps 1-3:

/B VIlgl* = IV lleasy < CrllVIipnziwylg*llimm-2.1(5,) < CaCPCEIV | nra s, IV gllL25,).
1

Therefore: [ Vil
g
Av(l) = sup 317 S C||V||Ln/2,1 B1)s
geri B0y Jp, [Val? (B
where C = CHOch is a universal constant. O
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Remark A.2 (Domain Transfer). For a ball B, of arbitrary radius r > 0, the same bound
holds with the same constant C' (independent of r) by scaling. Specifically, if V' €
L™?(B,), then:

Ay(r) < OV g s,

where the constant C' is the same as for Bj.

Corollary A.3 (Lorentz Membership Implies Form-Boundedness). If V € L"*'(Bg),
then:
Av(R) < OV Lnrza sy,

where C' is the universal constant from Proposition A.1.
Proof. By Proposition A.1 applied to the ball Bg:
Av(R) < ClV |2 (Bg)-
O

Remark A.4 (Why Form-Boundedness is More General). Form-boundedness is strictly
weaker than Lorentz membership. There exist potentials V' such that:

o Ay(r) < oo (form-bounded)
o But [|[V|n/21(p5,) = 0o (not in Lorentz space)

See Kerman—Sawyer [KS86] for examples. The form-boundedness viewpoint is there-
fore the natural hypothesis for Carleman estimates and unique continuation.

B Kerman—Sawyer Trace Inequality

This appendix provides the full Kerman—Sawyer characterization of form-boundedness
and its relation to trace inequalities.

B.1 Kerman—Sawyer Theorem

Theorem B.1 (Kerman-Sawyer Trace Characterization). A potential V' is form-bounded
on B, (ie., Ay(r) < oo) if and only if there exists a constant C' > 0 such that for all

g € H\(B,):
L vigr<c [ vge
B, B

The optimal constant C' equals Ay (r).
Moreover, V' is form-bounded if and only if V' satisfies the trace inequality:

[ Wig<c [ 1vg+c [ |g2
B, B, By

for all g € H'(B,) (not necessarily with zero boundary conditions).

Proof. The first equivalence is the definition of the form functional Ay (r).

For the second equivalence (trace inequality), see Kerman—Sawyer [KS86], Theorem
1.1. The key point is that the trace inequality with the L? term is equivalent to form-
boundedness when restricted to functions with compact support (via a cutoff argument).

O
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B.2 Relation to Fefferman—Phong
Remark B.2 (Fefferman-Phong Condition). Fefferman-Phong [FP83] showed that poten-

tials satisfying:
[ wi<or
By (x)

for all balls B,(z) (i.e., V € L"?**®) are form-bounded. This is a special case of the
Kerman-Sawyer characterization, as L™%> membership implies the trace inequality.

B.3 Examples of Form-Bounded Potentials
Example B.3 (Lorentz Membership). If V € L™?(B,), then by Appendix A:
Ap(r) < CIV ] porei -
Therefore, Lorentz membership implies form-boundedness.

Example B.4 (Kerman-Sawyer Type). Potentials of the form V (z) = |x|72 (or localized
versions) are form-bounded but may not be in L™/?!. The form-control constant Ay ()
remains finite even though ||V||;n/2: may be infinite.

Example B.5 (Morrey Potentials). Potentials in Morrey spaces M™?(B,) are form-
bounded, as Morrey membership implies the trace inequality via the same Sobolev em-
bedding argument.

B.4 Application to Unique Continuation

Remark B.6 (Why Form-Boundedness is Natural for UC). The Kerman—Sawyer trace in-
equality shows that form-boundedness is exactly what is needed for the energy inequality:

[, Wil < Av(r) [ [9ul?
This is the key estimate used in:
 Carleman estimate absorption (Lemma 5.2)
 Frequency function monotonicity (Theorem 4.2)
« Doubling inequality derivation (Theorem 4.3)

Therefore, form-boundedness is the natural hypothesis for unique continuation, not
Lorentz membership.
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