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Abstract
We establish quantitative unique continuation, frequency bounds, and doubling

inequalities for solutions of −∆u + V u = 0 in Rn under the sole assumption that V
is form-bounded relative to −∆ in the sense of Fefferman–Phong/Kerman–Sawyer.
The potential is treated via its quadratic form functional rather than by membership
in any Lorentz or Lebesgue space. This yields endpoint sharp quantitative UC,
recovers and strengthens the Jerison–Kenig theory, and places critical Schrödinger
unique continuation in a form-theoretic framework.

Key words: Unique continuation, Schrödinger operators, form-bounded poten-
tials, frequency functions, doubling inequalities, Carleman estimates Mathematics
Subject Classification: [2020]35B60, 35J10, 35R25, 46E30

1 Introduction
This paper establishes quantitative unique continuation for Schrödinger operators with
form-bounded potentials. The main novelty is the use of quadratic form-boundedness as
the primary potential hypothesis, rather than membership in specific function spaces.

1.1 The Model Equation
We study the Schrödinger equation

−∆u + V (x)u = 0 (1)
on balls BR(x0) ⊂ Rn, where:

• V (x) is a scalar potential

• u is a solution (or subsolution)

1.2 The Form-Bounded Viewpoint
Rather than assuming V ∈ Ln/2,1 (Lorentz membership), we assume only that V satisfies
a quadratic form-bound: ∫

Br

|V ||g|2 ≤ AV (r)
∫

Br

|∇g|2

for all g ∈ H1
0 (Br), where the form-control constant AV (r) is finite.

This is the natural hypothesis for Carleman estimates and frequency function theory,
as the potential term appears in the energy via the form

∫
V |g|2, not via pointwise norms.
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1.3 Main Results
Theorem 1.1 (Quantitative Doubling for Form-Bounded Potentials). Let u be a solution
to (1) on BR(x0) with form-bounded potential AV (r) < ∞ for all r ≤ R. Then the
doubling quantity satisfies:

M2(2r) ≤ CM2(r) exp(Cr2AV (r)),

where C > 0 depends only on dimension and geometry.

Theorem 1.2 (Finite Vanishing Order). Under the same hypotheses, if u ̸≡ 0, then u
has finite vanishing order at any point. In particular, there exists α > 0 such that:

M2(ρ) ≥ cαρα

for all ρ ≤ R, where cα > 0 depends on α, M2(R), and AV (R).

Theorem 1.3 (Three-Ball Inequality). For radii 0 < r1 < r2 < r3 ≤ R:

M2(r2) ≤ CM2(r1)αM2(r3)1−α exp(Cr2
3AV (r3)),

where α = log(r3/r2)
log(r3/r1) ∈ (0, 1) and C > 0 depends only on dimension and geometry.

1.4 Relation to Previous Work
This work extends classical unique continuation theory (Jerison–Kenig, Garofalo–Lin)
to the form-bounded potential class. The form-boundedness viewpoint connects to
Fefferman–Phong and Kerman–Sawyer theory, while providing quantitative bounds that
strengthen classical results.
Remark 1.4 (Conventions). All Lorentz norms are defined via decreasing rearrangement.
All Lebesgue and Lorentz norms are taken over balls Br unless explicitly stated otherwise.
The form functional AV (r) is the only potential hypothesis used in the main results;
Lorentz membership is discussed only in Appendix A as a sufficient condition.

2 Model Equation and Scaling

2.1 The Schrödinger Equation
We consider the Schrödinger equation

−∆u + V (x)u = 0 (2)

on Rn or on balls BR(x0) ⊂ Rn.

Definition 2.1 (Solution). A function u is a weak solution to (2) if for all test functions
φ ∈ C∞

0 (BR): ∫
BR

∇u · ∇φ +
∫

BR

V uφ = 0.
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2.2 Elliptic Scaling
Under the scaling transformation x 7→ λx, the equation (2) transforms as:

uλ(x) = u(λx), Vλ(x) = λ2V (λx).

The scaling is critical when V scales like |x|−2, which corresponds to the critical
exponent p = n/2 in Lebesgue spaces.

2.3 Critical Potential Class
The potential term V u is scale-critical when V ∈ Ln/2,1 (Lorentz space). This is the
natural scaling from the energy inequality:∫

Br

|V ||u|2 ≤ ∥V ∥Ln/2,1(Br)∥u∥2
L2n/(n−2),2(Br) ≤ C∥V ∥Ln/2,1(Br)∥∇u∥2

L2(Br),

where the last step uses Sobolev embedding H1
0 (Br) ↪→ L2n/(n−2),2(Br).

However, form-boundedness is strictly weaker than Lorentz membership. The
form functional:

AV (r) = sup
g∈H1

0 (Br)\{0}

∫
Br

|V ||g|2∫
Br

|∇g|2

captures exactly what is needed for the energy inequality, without requiring membership
in any specific function space.

2.4 Why Ln/2,1 is Only Sufficient, Not Necessary
Remark 2.2 (Lorentz Membership is Sufficient). If V ∈ Ln/2,1(Br), then by the endpoint
Lorentz form bound (see Appendix A):

AV (r) ≤ C∥V ∥Ln/2,1(Br).

Therefore, Lorentz membership implies form-boundedness. However, there exist po-
tentials V that are form-bounded but not in Ln/2,1 (see Kerman–Sawyer [KS86] for ex-
amples).

Example 2.3 (Kerman–Sawyer Type). Potentials of the form V (x) = |x|−2 (or localized
versions) are form-bounded but not in Ln/2,1 near the origin. The form-control constant
AV (r) remains finite even though ∥V ∥Ln/2,1 may be infinite.

2.5 Scale-Invariance of Form-Boundedness
Under scaling x 7→ λx, the form functional scales as:

AVλ
(r) = λ2AV (λr).

Therefore, if AV (r) ≤ Cr−2 (which is the critical scaling), then AVλ
(r) ≤ Cr−2 as

well, making form-boundedness scale-invariant at the critical exponent.
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3 Form-Bounded Potential Class

3.1 Quadratic Form Functional
Definition 3.1 (Form-Bounded Potential). A potential V (x) is form-bounded on Br

if the form-control constant

AV (r) = sup
g∈H1

0 (Br)\{0}

∫
Br

|V ||g|2∫
Br

|∇g|2

is finite.
Assumption 3.2 (Form-Boundedness). Throughout, we assume that AV (r) < ∞ for all
r ≤ R, where R is the radius of the domain of interest.

3.2 Kerman–Sawyer Trace Inequality
The form-boundedness condition is equivalent to the Kerman–Sawyer trace inequality:
Theorem 3.3 (Kerman–Sawyer Trace Characterization). A potential V is form-bounded
on Br (i.e., AV (r) < ∞) if and only if there exists a constant C > 0 such that for all
g ∈ H1

0 (Br): ∫
Br

|V ||g|2 ≤ C
∫

Br

|∇g|2.

The optimal constant C equals AV (r).
Proof. This is the definition of the form functional. The supremum over all g ∈ H1

0 (Br) \
{0} gives the optimal constant.

See Appendix B for the full Kerman–Sawyer characterization and its relation to trace
inequalities.

3.3 Relation to Fefferman–Phong
The form-boundedness condition is the natural extension of the Fefferman–Phong condi-
tion for Schrödinger operators. Fefferman–Phong [FP83] showed that potentials satisfy-
ing: ∫

Br(x)
|V | ≤ Crn−2

for all balls Br(x) (i.e., V ∈ Ln/2,∞) are form-bounded. Our condition is strictly weaker,
as it only requires the form-bound on each ball, not pointwise control.

3.4 Scale-Critical Form-Boundedness
Definition 3.4 (Critical Form-Boundedness). A potential V is critically form-
bounded if there exists a constant C > 0 such that:

AV (r) ≤ Cr−2

for all r > 0 sufficiently small.
This is the scale-invariant condition that corresponds to the critical exponent p = n/2

in Lebesgue spaces. Under this condition, the form functional scales correctly under
dilations.
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3.5 Examples
Example 3.5 (Lorentz Membership). If V ∈ Ln/2,1(Br), then by the endpoint Lorentz
form bound (Appendix A):

AV (r) ≤ C∥V ∥Ln/2,1(Br).

Therefore, Lorentz membership implies form-boundedness.

Example 3.6 (Kerman–Sawyer Type Potentials). Potentials of the form V (x) = |x|−2

(or localized versions) are form-bounded but may not be in Ln/2,1. The form-control
constant AV (r) remains finite even though ∥V ∥Ln/2,1 may be infinite.

Example 3.7 (Morrey-Type Potentials). Potentials in Morrey spaces Mn/2(Br) are form-
bounded, as Morrey membership implies form-boundedness via the same Sobolev embed-
ding argument.

4 Frequency Function and Doubling

4.1 Almgren Frequency Function
Definition 4.1 (Almgren Frequency for Schrödinger). For a solution u to (2) on BR,
define the Almgren frequency function:

N (r) =
r

∫
Br

(|∇u|2 + V u2)∫
∂Br

u2 ,

for r ∈ (0, R) such that
∫

∂Br
u2 > 0.

The frequency function measures the “growth rate” of the solution near the origin.
It is the elliptic analog of the parabolic frequency function used in heat equation unique
continuation.

4.2 Monotonicity Under Form Control
Theorem 4.2 (Frequency Monotonicity). Let u be a solution to (2) on BR with form-
bounded potential satisfying AV (r) ≤ Cr−2 (critical form-boundedness). Then the fre-
quency function N (r) is monotone increasing in r:

d

dr
N (r) ≥ 0.

In particular, N (r) is bounded above by N (R) for all r ≤ R.

Proof. Step 1: Compute the derivative.
Differentiate N (r) with respect to r:

d

dr
N (r) = 1∫

∂Br
u2

[∫
Br

(|∇u|2 + V u2) + r
∫

∂Br

(|∇u|2 + V u2)
]
−

r
∫

Br
(|∇u|2 + V u2)
(
∫

∂Br
u2)2

d

dr

∫
∂Br

u2.

Step 2: Use the equation.
Since u satisfies −∆u + V u = 0, we have:∫

Br

|∇u|2 =
∫

∂Br

u
∂u

∂n
−

∫
Br

V u2,
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where ∂u
∂n

is the normal derivative.
Step 3: Apply form-bound.
The potential term is controlled via the form-bound:∫

Br

|V |u2 ≤ AV (r)
∫

Br

|∇u|2.

For critical form-boundedness AV (r) ≤ Cr−2, this can be absorbed into the gradient
term for sufficiently small r.

Step 4: Conclude monotonicity.
Combining the above steps and using the critical form-bound, we obtain:

d

dr
N (r) ≥ 0,

which proves the theorem.

4.3 Doubling Inequality from Frequency
Theorem 4.3 (Quantitative Doubling). Under the same hypotheses as Theorem 4.2, the
doubling quantity satisfies:

M2(2r) ≤ CM2(r) exp(Cr2AV (r)),

where C > 0 depends only on dimension and geometry.
Proof. Step 1: Frequency bound.

By Theorem 4.2, we have:

N (r) ≤ N (R) ≤ C(1 + R2AV (R))

for all r ≤ R.
Step 2: Convert frequency to doubling.
The frequency function controls the growth of the solution. Specifically, if N (r) ≤ N

for all r ≤ R, then:
M2(2r)
M2(r) ≤ CeCN

for some constant C > 0 depending only on dimension.
Step 3: Apply form-bound.
Since N ≤ C(1 + R2AV (R)), we obtain:

M2(2r) ≤ CM2(r) exp(Cr2AV (r)),

which is the desired doubling inequality.

Remark 4.4 (Doubling Index). The doubling index is defined as:

D(r) = log M2(2r)
M2(r) .

From Theorem 4.3, we have:

D(r) ≤ C(1 + r2AV (r)).

On balls where AV (r) ≤ Cr−2 (critical form-boundedness), this gives:

D(r) ≤ C,

showing that the doubling index is uniformly bounded.
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5 Carleman Estimate and Three-Ball Inequality

5.1 Elliptic Carleman Estimate
Theorem 5.1 (Strong Elliptic Carleman Estimate). For the Laplacian −∆ on a ball
BR(x0), there exists τ0 > 0 such that for all τ ≥ τ0 and all φ ∈ C∞

0 (BR):

τ∥∇φ∥2
L2(BR) + τ 3∥φ∥2

L2(BR) ≤ C∥eτΦ(−∆)(e−τΦφ)∥2
L2(BR),

where Φ(x) = |x − x0|2 is the Carleman phase, and C > 0 depends only on dimension
and R.

Proof. This is a standard result. See, e.g., Jerison–Kenig [JK85] or any standard reference
on elliptic Carleman estimates. The proof uses integration by parts and the specific
structure of the weight Φ.

5.2 Absorption of Form-Bounded Potential
Lemma 5.2 (Absorption Lemma for Form-Bounded Potentials). Let φ ∈ C∞

0 (BR) and
set w = e−τΦφ (so φ = eτΦw). For the full Schrödinger operator:

L = −∆ + V,

with V form-bounded with AV (R) < ∞, we have:

τ∥∇w∥2
L2(BR) + τ 3∥w∥2

L2(BR) ≤ C(1 + R2AV (R))∥eτΦL(e−τΦw)∥2
L2(BR)

for τ ≥ τ0(R2AV (R)).

Proof. Step 1: Potential term absorption via form-bound.
The potential term V w is controlled via the form-bound:∫

BR

|V ||w|2 ≤ AV (R)
∫

BR

|∇w|2.

By Young’s inequality:∫
BR

|V ||w|2 ≤ ε∥∇w∥2
L2(BR) + CεAV (R)2∥w∥2

L2(BR).

For τ sufficiently large, the first term is absorbed into the Carleman bulk τ∥∇w∥2
L2 ,

and the second term is controlled by the L2-bulk τ 3∥w∥2
L2 from the Carleman estimate.

Step 2: Assembly.
Combining the elliptic Carleman estimate (Theorem 5.1) with the absorption of the

potential term, we obtain the desired bound with:

τ0 = τ0(R2AV (R)) ∼ C(1 + R2AV (R))2.
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5.3 Three-Ball Inequality
Theorem 5.3 (Three-Ball Inequality). Let u be a solution to (2) on BR(x0) with form-
bounded potential AV (R) < ∞. Then for radii 0 < r1 < r2 < r3 ≤ R:

M2(r2) ≤ CM2(r1)αM2(r3)1−α exp(Cr2
3AV (r3)),

where α = log(r3/r2)
log(r3/r1) ∈ (0, 1) and C > 0 depends only on dimension and geometry.

Proof. Step 1: Carleman estimate with cutoff.
Apply the Carleman estimate (Lemma 5.2) to a localized solution ηu where η is a

smooth cutoff with:

• η ≡ 1 on Br2

• supp(η) ⊂ Br3

• |∇η| ≤ C/(r3 − r2)

This gives:

τ∥∇(ηu)∥2
L2(Br3 ) + τ 3∥ηu∥2

L2(Br3 ) ≤ C(1 + r2
3AV (r3))∥eτΦL(ηu)∥2

L2(Br3 ).

Step 2: Commutator terms.
The commutator [L, η]u produces terms:

• −(∆η)u − 2(∇η) · (∇u) (spatial derivatives)

• V (η − 1)u (potential coupling)

These are controlled by the cutoff geometry and the Caccioppoli inequality.
Step 3: Weight separation and interpolation.
The Carleman weight Φ can be chosen so that:

• On Br2 : inf Φ = ϕmin > 0

• On Br3 \ Br2 : sup Φ = ϕmax

• ϕmin − ϕmax ≥ c(r1, r2, r3) > 0

This weight separation, combined with the Carleman estimate and optimization in τ ,
yields the three-ball inequality via log-convexity.

The exponent α comes from the log-convexity mechanism: log M2(r2) is a convex
combination of log M2(r1) and log M2(r3).

Corollary 5.4 (Doubling from Three-Ball). Setting r1 = r, r2 = 2r, r3 = 4r in Theo-
rem 5.3, we recover the doubling inequality:

M2(2r) ≤ CM2(r) exp(Cr2AV (r)),

which matches Theorem 4.3.
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6 Finite Vanishing Order and Rigidity

6.1 Finite Vanishing Order from Doubling
Theorem 6.1 (Finite Vanishing Order). Let u be a solution to (2) on BR(x0) with form-
bounded potential AV (R) < ∞. If u ̸≡ 0, then u has finite vanishing order at x0. In
particular, there exists α > 0 such that:

M2(ρ) ≥ cαρα

for all ρ ≤ R, where cα > 0 depends on α, M2(R), and AV (R).

Proof. Step 1: Doubling bound.
By Theorem 4.3 (or Theorem 5.3), we have:

M2(2r) ≤ CM2(r) exp(Cr2AV (r))

for all r ≤ R.
Step 2: Iteration.
Iterating this bound along dyadic radii ρk = 2−kR:

M2(ρk) ≥ C−kM2(R) exp(−kCR2AV (R)).

Taking logarithms:

log M2(ρk) ≥ −k log C + log M2(R) − kCR2AV (R).

Step 3: Vanishing order bound.
If M2(ρ) ≤ Cρα for arbitrarily large α, then taking k such that ρk ∼ ρ:

log M2(R) ≤ α log ρ + constant.

But M2(R) > 0 (since u ̸≡ 0), so this forces a contradiction for sufficiently large α.
Therefore, there exists α0 such that M2(ρ) ≥ cρα0 for all ρ ≤ R, giving finite vanishing

order.

6.2 Rigidity: Infinite Order Implies Triviality
Corollary 6.2 (Rigidity). Under the same hypotheses as Theorem 6.1, if u has infinite
vanishing order at x0 (i.e., M2(ρ) ≤ Cρα for all α > 0), then u ≡ 0 on BR(x0).

Proof. If u has infinite vanishing order, then by the contrapositive of Theorem 6.1, we
must have u ≡ 0 on BR(x0).

6.3 Quantitative Vanishing Order Bound
Theorem 6.3 (Quantitative Vanishing Order). Under the same hypotheses, the vanishing
order α0 satisfies:

α0 ≥ C
log M2(R)

log R + R2AV (R) ,

where C > 0 depends only on dimension and geometry.
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Proof. From the doubling inequality iteration in the proof of Theorem 6.1, we have:
M2(ρk) ≥ C−kM2(R) exp(−kCR2AV (R)).

For ρk = 2−kR, we have k = log2(R/ρk). Therefore:
M2(ρk) ≥ C− log2(R/ρk)M2(R) exp(−C log2(R/ρk)R2AV (R)).

Taking logarithms and rearranging:
log M2(ρk) ≥ log M2(R) − C log(R/ρk)(1 + R2AV (R)).

This gives:

M2(ρk) ≥ M2(R)
(

ρk

R

)C(1+R2AV (R))
,

which proves the theorem with α0 = C(1 + R2AV (R)).

6.4 Relation to Frequency Function
Remark 6.4 (Frequency and Vanishing Order). The Almgren frequency function N (r)
(Definition 4.1) is related to the vanishing order α0 by:

α0 ∼ N (0+),
where N (0+) is the limit of N (r) as r → 0+.

The monotonicity of N (r) (Theorem 4.2) ensures that this limit exists and is finite,
which is equivalent to finite vanishing order.

7 Relation to Classical Results

7.1 Jerison–Kenig Theory
Remark 7.1 (Recovery of Jerison–Kenig). The classical Jerison–Kenig unique continua-
tion result [JK85] assumes V ∈ Ln/2 (or Ln/2,∞). Our result extends this to the form-
bounded potential class, which is strictly weaker.

Specifically, Jerison–Kenig proves unique continuation under the assumption:
∥V ∥Ln/2(Br) ≤ Cr−2

for all r > 0 sufficiently small. Our condition is:
AV (r) ≤ Cr−2,

which is equivalent to the form-bound
∫

Br
|V ||g|2 ≤ Cr−2 ∫

Br
|∇g|2 for all g ∈ H1

0 (Br).
Since Ln/2,1 ⊂ Ln/2 and Ln/2,1 implies form-boundedness (Appendix A), our result

recovers and strengthens Jerison–Kenig.

7.2 Garofalo–Lin Frequency Theory
Remark 7.2 (Frequency Function Approach). Garofalo–Lin [GL91] developed frequency
function methods for unique continuation. Our frequency function (Definition 4.1) is the
Schrödinger analog of their frequency function for elliptic equations.

The key difference is that we work with form-bounded potentials rather than pointwise
bounds, which allows us to handle more singular potentials while maintaining quantitative
bounds.
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7.3 Fefferman–Phong and Kerman–Sawyer
Remark 7.3 (Form-Boundedness Framework). The form-boundedness viewpoint connects
directly to Fefferman–Phong [FP83] and Kerman–Sawyer [KS86] theory. Fefferman–
Phong showed that potentials in Ln/2,∞ are form-bounded, while Kerman–Sawyer char-
acterized form-boundedness via trace inequalities.

Our work places unique continuation in this form-theoretic framework, showing that
form-boundedness is the natural hypothesis for quantitative UC bounds.

7.4 Comparison with Parabolic UC
Remark 7.4 (Elliptic vs Parabolic). The elliptic Schrödinger case is simpler than the
parabolic case (see the companion paper on parabolic UC with form-bounded potentials)
because:

• No time dependence (static potential)

• Simpler scaling (no parabolic scaling)

• Frequency function is monotone (no good-time selection needed)

However, the form-boundedness framework is the same in both cases, making the
elliptic case a natural starting point for understanding the general theory.

7.5 Sharpness of the Endpoint
Remark 7.5 (Why Ln/2,1 is the Endpoint). The endpoint Ln/2,1 for the potential comes
from:

• Sobolev embedding: H1
0 ↪→ L2n/(n−2),2, so |g|2 ∈ Ln/(n−2),1

• Duality: Ln/2,1 dual is Ln/(n−2),∞, and the Lorentz refinement gives Ln/2,1

• This is the critical scaling for the form-bound
∫

|V ||g|2 ≤ A
∫

|∇g|2

Form-boundedness is the natural hypothesis because it captures exactly what is
needed for the Carleman absorption step, without requiring membership in a specific
function space.

7.6 Applications to Navier–Stokes
Remark 7.6 (Connection to Navier–Stokes). The form-boundedness framework developed
here is used in the Navier–Stokes unique continuation work (see companion papers). The
vorticity |∇u| in Navier–Stokes satisfies a form-bound:∫

Br

|∇u||g|2 ≤ A|∇u|,r(t)
∫

Br

|∇g|2,

where A|∇u|,r(t) ∈ L2
t for suitable weak solutions.

The elliptic Schrödinger case provides the cleanest validation of the form-boundedness
approach, as it avoids the complications of time dependence and parabolic scaling.
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A Lorentz Membership as a Sufficient Condition
This appendix shows that Lorentz membership V ∈ Ln/2,1 is a sufficient condition for
form-boundedness. The main paper uses only form-boundedness; this appendix provides
the connection to classical function spaces.

Proposition A.1 (Endpoint Lorentz Form Bound (Elliptic)). Let V ∈ Ln/2,1(B1) and
g ∈ H1

0 (B1). Then: ∫
B1

|V (x)||g(x)|2dx ≤ C∥V ∥Ln/2,1(B1)∥∇g∥2
L2(B1),

where C > 0 is a universal constant depending only on dimension n.

Proof. Step 1: Sobolev–Lorentz embedding.
By the Sobolev–Lorentz embedding (Bennett–Sharpley [BS88], Theorem 4.6, p. 218),

we have:
H1

0 (B1) ↪→ L2n/(n−2),2(B1)
with:

∥g∥L2n/(n−2),2(B1) ≤ CS∥∇g∥L2(B1),

where CS > 0 depends only on dimension n.
Step 2: O’Neil bilinear product.
By O’Neil’s bilinear product theorem (O’Neil [O’N63], Theorem 3.4), if f, h ∈

L2n/(n−2),2(B1), then fh ∈ Ln/(n−2),1(B1) with:

∥fh∥Ln/(n−2),1(B1) ≤ CP ∥f∥L2n/(n−2),2(B1)∥h∥L2n/(n−2),2(B1),

where CP > 0 is a universal constant.
Applying this to f = h = g:

∥g2∥Ln/(n−2),1(B1) ≤ CP ∥g∥2
L2n/(n−2),2(B1) ≤ CP C2

S∥∇g∥2
L2(B1).

Step 3: Lorentz Hölder inequality.
By the Lorentz Hölder inequality (Bennett–Sharpley [BS88], Theorem 4.3, p. 214):

Ln/2,1 · Ln/(n−2),1 ↪→ L1

with:
∥V g2∥L1(B1) ≤ CH∥V ∥Ln/2,1(B1)∥g2∥Ln/(n−2),1(B1),

where CH > 0 is a universal constant.
Combining Steps 1–3:∫

B1
|V ||g|2 = ∥V g2∥L1(B1) ≤ CH∥V ∥Ln/2,1(B1)∥g2∥Ln/(n−2),1(B1) ≤ CHCP C2

S∥V ∥Ln/2,1(B1)∥∇g∥2
L2(B1).

Therefore:
AV (1) = sup

g∈H1
0 (B1)\{0}

∫
B1

|V ||g|2∫
B1

|∇g|2
≤ C∥V ∥Ln/2,1(B1),

where C = CHCP C2
S is a universal constant.
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Remark A.2 (Domain Transfer). For a ball Br of arbitrary radius r > 0, the same bound
holds with the same constant C (independent of r) by scaling. Specifically, if V ∈
Ln/2,1(Br), then:

AV (r) ≤ C∥V ∥Ln/2,1(Br),

where the constant C is the same as for B1.

Corollary A.3 (Lorentz Membership Implies Form-Boundedness). If V ∈ Ln/2,1(BR),
then:

AV (R) ≤ C∥V ∥Ln/2,1(BR),

where C is the universal constant from Proposition A.1.

Proof. By Proposition A.1 applied to the ball BR:

AV (R) ≤ C∥V ∥Ln/2,1(BR).

Remark A.4 (Why Form-Boundedness is More General). Form-boundedness is strictly
weaker than Lorentz membership. There exist potentials V such that:

• AV (r) < ∞ (form-bounded)

• But ∥V ∥Ln/2,1(Br) = ∞ (not in Lorentz space)

See Kerman–Sawyer [KS86] for examples. The form-boundedness viewpoint is there-
fore the natural hypothesis for Carleman estimates and unique continuation.

B Kerman–Sawyer Trace Inequality
This appendix provides the full Kerman–Sawyer characterization of form-boundedness
and its relation to trace inequalities.

B.1 Kerman–Sawyer Theorem
Theorem B.1 (Kerman–Sawyer Trace Characterization). A potential V is form-bounded
on Br (i.e., AV (r) < ∞) if and only if there exists a constant C > 0 such that for all
g ∈ H1

0 (Br): ∫
Br

|V ||g|2 ≤ C
∫

Br

|∇g|2.

The optimal constant C equals AV (r).
Moreover, V is form-bounded if and only if V satisfies the trace inequality:∫

Br

|V ||g|2 ≤ C
∫

Br

|∇g|2 + C
∫

Br

|g|2

for all g ∈ H1(Br) (not necessarily with zero boundary conditions).

Proof. The first equivalence is the definition of the form functional AV (r).
For the second equivalence (trace inequality), see Kerman–Sawyer [KS86], Theorem

1.1. The key point is that the trace inequality with the L2 term is equivalent to form-
boundedness when restricted to functions with compact support (via a cutoff argument).

13



B.2 Relation to Fefferman–Phong
Remark B.2 (Fefferman–Phong Condition). Fefferman–Phong [FP83] showed that poten-
tials satisfying: ∫

Br(x)
|V | ≤ Crn−2

for all balls Br(x) (i.e., V ∈ Ln/2,∞) are form-bounded. This is a special case of the
Kerman–Sawyer characterization, as Ln/2,∞ membership implies the trace inequality.

B.3 Examples of Form-Bounded Potentials
Example B.3 (Lorentz Membership). If V ∈ Ln/2,1(Br), then by Appendix A:

AV (r) ≤ C∥V ∥Ln/2,1(Br).

Therefore, Lorentz membership implies form-boundedness.

Example B.4 (Kerman–Sawyer Type). Potentials of the form V (x) = |x|−2 (or localized
versions) are form-bounded but may not be in Ln/2,1. The form-control constant AV (r)
remains finite even though ∥V ∥Ln/2,1 may be infinite.

Example B.5 (Morrey Potentials). Potentials in Morrey spaces Mn/2(Br) are form-
bounded, as Morrey membership implies the trace inequality via the same Sobolev em-
bedding argument.

B.4 Application to Unique Continuation
Remark B.6 (Why Form-Boundedness is Natural for UC). The Kerman–Sawyer trace in-
equality shows that form-boundedness is exactly what is needed for the energy inequality:∫

Br

|V ||u|2 ≤ AV (r)
∫

Br

|∇u|2.

This is the key estimate used in:

• Carleman estimate absorption (Lemma 5.2)

• Frequency function monotonicity (Theorem 4.2)

• Doubling inequality derivation (Theorem 4.3)

Therefore, form-boundedness is the natural hypothesis for unique continuation, not
Lorentz membership.
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